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ABSTRACT

OPTIMAL TOPOLOGICAL ARRANGEMENTS OF
QUEUES IN CLOSED FINITE QUEUEING NETWORKS

MAY 2015

LENING WANG

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor J. MacGregor Smith

Closed queueing networks are widely used in many different kinds of scientific

and business applications. Since the demands of saving energy and reducing costs are

becoming more and more significant with developing technologies, finding a system-

atic methodology for getting the best arrangement is very important. In this thesis,

design rules are proposed for tandem and various other topologies, to help the de-

signer find the best arrangements which maximize the throughput. Our topological

arrangements problem (TAP) can be established as: the system has m-service sta-

tions in a network and each one may have different design parameters. To relax the

queueing system, the original finite buffer queue is decomposed into a buffer and an

infinite buffer server system. Mean Value Analysis (MVA) is used to measure the per-

formance of each topology arrangement. Finally, mixed-integer sequential quadratic

programming (MISQP) is used to solve the optimization problem and it is compared

with enumeration and a simulation model of Arena (a discrete-event model).
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CHAPTER 1

INTRODUCTION TO THE PROBLEM

Queueing network models are widely used to analyze manufacturing systems,

scheduling systems, service systems and computer network systems. There are many

applications for closed queueing networks such as a central server network in computer

science which is shown in figure 1.1. A computer with one CPU (Central Processing

Unit) and some I/O (Input/Output) devices is presented. New jobs enter the system

by different I/O devices, and a single CPU resource is needed to process the jobs.

When a job is finished, it returns to the CPU to ask for more resources. The number

of jobs in the system is fixed, and it is also called as the ‘degree of multiprogramming’.

Not just in computer science, but in many other applications, optimizing the critical

resources is necessary because the demands of saving energy and reducing costs are

becoming more and more significant with developing technologies. This is one of the

most important reasons why better performance and optimization tools are needed

which play a vital role during design and operations. It would help companies to

save cost and resources, and reach the goal in the most economical way. If the best

arrangements could be found during the planning stage, it would not only maximize

profits but also avoid the extra cost of modification in the future. So the key factor

is to develop a systematic methodology to help one reach this goal, not limited in

one or two applications, but could be widely used in many different kinds of network

applications.

1
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Figure 1.1. Example of open central server network

1.1 Outline of Thesis

In the first chapter, we will present the problem in detail and show the complexity

of the problem. The motivation and mathematical models used in our research also

will be presented. In the second chapter, the past research carried out before by

many others will be shown. In the third chapter, the notations, assumptions, queue

decomposition method and procedures to build the optimization problem will be

illustrated. The performance algorithm which is the mean value analysis (MVA)

will be discussed. Then the optimization algorithm and the enumeration algorithm

will be shown. After that, experimental results for tandem and split systems, large

topologies, and also state-dependent queues networks will be presented. Based on

experimental data and analysis, the design rules will be developed. The final section

is the summary and conclusion of the research.

1.2 Motivation

Figure 1.2 gives an indication of our problem. In this example, a split topology of a

series of five work stations connected by a material handling system is presented, and

we wish to topologically arrange the workstations so that the throughput is maximized

in our manufacturing system. This problem is challenging because the designer not
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only needs to arrange every workstation in each position, but also needs to measure the

performance of the system and compute the throughput, work-in-process, and sojourn

or cycle times of the topology where a finite circulating population of component

parts and finite buffers at the workstations are included. Ki represent the size of

finite capacities, µi are the service rates, θi represent the throughput and N is the

finite population in the system.

1
K1, µ1

K2, µ2

K4, µ4

K3, µ3

K5, µ5

θ1

θ2

M/G/c/c

M/G/c/c

Transport

Transport

2

4

3

5

N
2

N
2

Figure 1.2. Five-node Split Topology

In this thesis, all queueing nodes are considered as M/M/c/K queueing models.

This acronym is based on Kendall’s notation[18], for example, the system A/B/C/D

stands for:

• A: Arrival process (how the jobs or parts arrive to the system, e.g. Poisson

Process)

• B: Server process (how the jobs or parts are processed, e.g. Exponential service)

• C: Number of servers (number of computers, servers, or machines)

• D: Queue capacity (including waiting room and number of severs)

Especially, for the M/M/c/K systems, the spelling M means Markovian or memory-

less. It also represents the arrival process of the model as the Poisson process. The

3
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second M represents the service time distribution which is the Exponential distribu-

tion. ’c’ is the number of servers at the station and ’k’ is the capacity of the queue.

The M/G/c/c queues represent the material handing or transportation system (or

conveyor). The difference between the M/M/c/K model and the M/G/c/c queue is

that the latter follows the general distribution and has the same number of capacities

and service channels which are equal to the coefficient ’c’. [3][18].

1.3 Problem overview

This thesis mainly concentrates on closed queueing networks. The definition of

closed queuing networks is: there are no external arrivals into the networks and no de-

partures from it either. So one of the most vital properties is: the number of customers

or tasks in the network is fixed, or in other words, is a constant. As we mentioned

before, the closed queueing networks have many applications such as manufactur-

ing systems, multi-programmed computer systems, telecommunication networks, etc.

The closed queueing networks which we study are called a closed Jackson network.

They should satisfy the following assumptions[9]:

• I: It has m service stations (nodes)

• II: The service rate at node i is µi(n) when the number of customers at node i

is given by n. µi(0) > 0

• III: There is a probabilistic choice when a customer completing service at node

i and joins the node j. The probability is defined as rij , it is independent of

the number of customers at any nodes and the history of customer routing.

• IV: The routing matrix R = [rij] is a transition probability matrix of an irre-

ducible DTMC (discrete-time Markov chain)

4
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So the transition matrix of figure 1.1 could be written as below:

R =



0 0.3 0.4 0.3

1 0 0 0

1 0 0 0

1 0 0 0


The performance algorithm is also based on the transition matrix as it will be

shown later. To find a systematic methodology which could help one get the best

arrangement of closed queueing networks, we need to consider and build the topo-

logical arrangements problem, which consists of m-service stations, each server’s rate

µ having an exponential distribution and they may have different rate parameters.

The most interesting question is what arrangement should we adopt to maximize the

profit, such as throughput, and minimize the cycle time or sojourn time. The dif-

ferent arrangement pattern of nodes would make a great influence for the queueing

system. Transport systems (the M/G/c/c nodes) such as conveyors, people, carts

and lifts also will be considered. The material handling system (MHS) is an integrat-

ed transport network with the buffers of the machine centers. The closed queueing

networks which are presented in this thesis have series, merge, and split elements in

its topology. Multiple products can be captured with the network approach as they

follow specific production plan routes within the facility. Analytical models of such

networks should be developed in order to provide fast, efficient and accurate ways

of computing the performance. Further, the models can be used for making optimal

arrangements of the system.

The topological arrangements problem (TAP) is very similar to the quadratic

assignment problem (QAP), which can be simply formulated as:

• There are a set of n facilities and a set of n locations. The distance between each

pair of location is specified, and the flows transported between two facilities
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Facilities A B C
A 0 40 50
B 40 0 60
C 50 60 0

Table 1.1. Distance matrix of QAP

Facilities A B C
A 0 5 6
B 5 0 7
C 6 7 0

Table 1.2. Flow costs per unit distance matrix of QAP

are specified. The arrangement problem is to assign all facilities to different

locations to minimize the sum of flow costs, which is defined as the distance

multiplied by the number for flow supplies of each pair of facilities. The data of

distance between each location and the flow cost per unit distance are shown in

tables 1.1 and 1.2. The matrices are symmetric with zeros along the diagonal.

So the cost function can be represented by:

n∑
i=1

m∑
j=1

fijd(g(i), g(j)) (1.1)

The decision variables are defined as: xij = 1 if g(i) = j. Otherwise, xij = 0

Each assignment fijd(g(i), g(j)) means the cost of assigning facilities i to loca-

tion g(i) and j to g(j). The constraints are shown in equations 1.2 and 1.3,

which means every facility only can be fixed once, and every location can only

be allocated to one facility.
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n∑
i=1

xij = 1 j = 1, 2, ..., n

xij ∈ {0, 1}

(1.2)

n∑
j=1

xij = 1 i = 1, 2, ..., n

xij ∈ {0, 1}

(1.3)

When formulating the TAP later in the thesis, many similarities will be found

between the QAP and the TAP. But since the objective function is quite different, we

cannot use the same methods to solve it. What we expect in the TAP is to find the

Figure 1.3. classify of computational complexity

best arrangements which can maximize the throughput or minimize the cycle time

of system. However, the objective function in the TAP is a bit more complicated

than the function of the QAP. Measuring the throughput is dependent upon the

queueing model which is used to calculate the flow matrix performance measure and

it is highly nonlinear. In most cases, the previous problem requires an exhaustive

algorithm to find the best arrangement. While the approach has its limitations,

7
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the performance tool will be helpful in finding and comparing the best arrangement.

Similar to the QAP, the TAP is a NP-Hard (Non-deterministic Polynomial-time Hard)

problem, which is the hardest class in computational complexity theory. It is widely

suspected that there are no polynomial-time algorithms for the NP-hard problem and

approximate methods are always going to be used to solve this type of problem. The

Venn diagram breakdown of computational complexity classes is shown in figure 1.3.

(Note: P 6= NP )[12][14]
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CHAPTER 2

LITERATURE REVIEW

In this chapter, the past research carried out before by many others will be re-

viewed. In the first section, the general modeling algorithm for closed queueing net-

work arrangements will be discussed. Next, the difficulty of the optimal arrangements

problem and some methods to deal with the problem will be presented. In the last

section, some design rules for generating queueing arrangements will be reviewed.

2.1 Closed Queueing Network Models

The paper by Gordan and Newell[10][11], which is central to modeling algorithms

for closed queueing networks, provided the key result along with a First-Come First-

serve (FCFS) priority queue discipline, and they introduced closed queueing network

models with the exponentially distributed inter-arrival and service time distributions.

Baskett, Chandy,Muntz and Palacios[7] expanded the research of Gordan and Newell,

working on different job classes and mixed networks for both closed and open systems.

Shanthikumar and Yao[15] presented new research for solving the optimal server

allocation problem. Koenigsberg [4] is probably the first to discuss the closed queueing

networks with material handling systems (MHS). A paper by Smith and Kerbache[16]

discussed the MHS which is based on the finite closed queueing systems with the

M/G/c/c queues. Bedell and Smith[24] provided a study of topological arrangements

of finite closed queueing networks which are mainly the foundation of this thesis and

proved that the TAP (topological arrangements problem) is a NP-hard problem.

9
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2.2 Problem Difficulty

The optimal arrangement of queues is difficult to solve since there are an expo-

nential number of possible combinations for a topology system. Also measuring the

performance of the system is complicated because the blocking in the system is dis-

ruptive to the flow of parts in the system. Perros[13] presented the first book for

finite closed queueing networks to emphasize the blocking in the network. To deal

with the blocking in the system, a modified version of the mean value analysis (M-

VA) algorithm is used. Reiser and Lavenburg [22] developed a good solution of closed

system which depends on the MVA. An approximation is introduced by Akyildiz, I.F

[1] which is for the MVA of queueing network with blocking. Also Zhuang, Buzacot,

Liu [21] discussed an approximation for the exponential service system with block-

ing based on a modified MVA approach. Smith[27] provided a methodology called

queue decomposition for closed finite network models which is the foundation for the

approach needed in this thesis.

2.3 Design Rules

The design rules are the systematic methodologies which can help one reach the

best arrangements of queueing system during the design stage. For tandem systems,

which are the simplest system for queueing networks, Tembe and Wolff [30] developed

an algorithm about the optimal order of service in tandem systems. Genji, Hirotaka

and J. George[8] presented two rules which are for the optimal arrangement of tandem

queueing systems with blocking to maximize throughput. The first design rule, which

is most important, is placing the two worst stations one in the first stage and the

second in the last stage. For the M/M/∞ queueing systems, station i is superior to

station j if µi ≥ µj. µi represent the service rate of station i (i = 1, 2, 3...). Next,

we can posit the second rule to assign the remaining (m-2) stations after ordering

them according to the previous method. Suppose the stations are numbered such
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m ≥ m − 1 ≥ · · · ≥ 1 and station 1 and 2 should be the first and the last stage,

then assign station 3 to stage m-1, station 4 to 2, stage 5 to m-2, stage 6 to 3 and so

on. Because a function plot of optimal stage vs. station number has the cross-section

shape of the interior of a bowl, it is also called the ‘bowl phenomenon’. The two rules

can be simply stated as:

• I: Place the two worst stations one at the first stage and the second at the last

stage.

• II: Following the ’bowl phenomenon’, which means better stations are closer to

center and worse stations are further from the center.

Lehtonen[20] presented an ordering problem of tandem queues with exponential

severs. Also, Betsy and Ronald[2] provided useful insights for tandem systems based

on a light traffic approximation which minimizes expected customer delay. They

considered in the situation of sufficiently light traffic along with a Poisson arrival

process, total expected delay in the queue is minimized when all costumers first go

to the slower server, and then to the faster one. Whitt[29] developed possible ap-

proximation methods which are called parametric-decomposition approximations for

queueing networks whose procedure for each distribution is partially characterized by

its first two moments or its mean and squared coefficient of variation. It would help

us to determine the order of the queueing system that minimizes the expected equi-

librium sojourn time per customer. He provided a useful heuristic design principle.

After that Suresh and Whitt[25] gave a simulation experiment for arranging queues

in series depending on the parametric-decomposition approximation which was men-

tioned before. The results show that the most vital factor is variability and if the

service-time variability is the same or nearly the same at the all queues, then the

order should not matter so much.
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CHAPTER 3

QUEUE DECOMPOSITION MODELLING APPROACH

3.1 Assumptions

We assume that the system is similar to an un-paced, asynchronous flow line or

flexible manufacturing system where jobs are often routed through the network over a

material handling or transportation system. This thesis mainly focuses on the closed

queueing network models with a finite population where the service rates are from an

Exponential distribution and examine arbitrary topologies of series, merge, and split

systems.

Before designing an algorithm for closed finite queueing networks, the appropriate

type of blocking mechanism must be specified. Basically there are three kinds of

blocking that are relevant in finite closed queueing networks: [23]

1.Type I (Production Blocking): The upstream node i gets blocked if the service

on a customer is completed but it cannot move downstream due to the queue at the

downstream node j being full. This is sometime referred to as Blocking After Service

(BAS)

2.Type II (Communication Blocking): The upstream node is blocked when the

downstream node becomes saturated and service must be suspended on the upstream

customer regardless of whether service is completed or not. This is sometimes referred

to as Blocking Before Service (BBS)

3.Type III (Repetitive Service Blocking): It is also appropriate in situations where

the customer cannot enter the upstream node but loops back continually where it

receives another independent service again from the upstream node.
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Type 1 (Production Blocking) is adopted in this thesis. This blocking policy is

very common during daily life applications, since it is the standard policy for queues

in which people wait for service, such as determining restaurant seating, processing

sales orders, and etc. Some of the most important definitions and notations occur in

the following subsection.

3.2 Notation

In order to make a better understanding of the system, concept and calculations,

the following presents most all of the notation needed for paper:

A :=Number of queueing chains in the network.

aij := Generic routing probability from node i to j in the network.

c := Number of servers in the M/M/c and M/G/c/c queue.

G := General service time distribution.

g := Normalization constant.

G(V,E) :=Graph topology of the closed queueing network with a finite set of

nodes V and a finite set of edges E.

k := Index on a chain in the network.

K := Capacity of a queue (including service).

λlk := Poisson arrival (throughput) rate to node l in chain k.

L := Length of an M/G/c/c queue (in meter).

M := Markovian arrivals (i.e. Poisson arrivals)

m :=Number of stages in the network.

µi := Exponential mean service rate at node i

µc := The processing rate for an M/G/c/c queue with fixed length and width(i.e.µc =

f(V1, L,W ) free-flow speed V1,capacity c ∼ f (length× width)

N := Total population of customers in the network.
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πl := Stationary probability of the number of customers at queue l in a closed

queueing network.

ρ := λ
µc

:= Proportion of time each server is busy.

W := width of an M/G/c/c queue.

θ(Wk) := Throughput of the closed queueing network as a function of the finite

population Wk.

Wk := The number of products(customers) in a single chain (class).

wlk := Average delay at node l in closed network.

xlh := Decision variable in transition matrix for node l and chain k.

3.3 Queue Decomposition Methodology

The Erlang distribution is usually applied when one studies queueing networks

since it is the distribution of the sum of k independent exponential distributions. In

other words:

if X ∼ Exponential(λ) then
∑k

i=1Xi ∼ Erlang(k, λ)

The probability density function is shown in 3.1:

f(x; k, λ) =
λkxk−1e−λx

(k − 1)!
(3.1)

Where k is the number of independent exponential distribution in system. The Erlang

distribution has many applications. For instance, there are several procedures at

airports when traveling, e.g. ticketing, luggage, boarding, seating, etc., and each

procedure can follow an exponential distribution, so the total time a passenger would

spend during the entire process is an Erlang distribution. The Erlang distribution

was developed by A. K. Erlang to examine of servers or lines. In general, it is a very

robust probability distribution and relates to the Gamma distribution.
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In queueing networks research, there are many ways to decompose finite buffer

queues with the Erlang service times. The primary advantage of queueing systems

with Erlang service time is their robustness which is well known. The M/G/K/K

system is crucial to the decomposition and relaxation process. Smith has presented

and examined when the decomposition of the M/M/1/k queue and the M/G/K/K+

M/M/1 can be made equivalent so that the throughput will be identical. Figure 3.2

illustrates the decomposition concept. The decomposition creates a ”holding node”

for the flow processes similar to a modeling concept for blocking processes in the

Expansion method process. The original system can be simplified by decomposing

procedure so this is a very constructive process.

λ

λ

M/M/1/K

µj

µj

θ1

θ2
M/G/K/K M/M/1

Figure 3.1. Open Network Decomposition Process

M/M/1/K

µj

µj

M/G/K/K M/M/1

θ(N)

θ(N)

Figure 3.2. Closed Network Decomposition Process

15



www.manaraa.com

The basic idea behind this methodology is to decompose the finite buffer queues

into a buffer and the server. The buffer is modeled as a state-dependent M/G/K/K

queue and the server is modeled as an infinite buffer mulit-server system. Let’s

consider that of an M/M/1/K system is set in the M/M/1 infinite space. Adding the

M/G/K/K node is equal to adding a holding node for blocking as in the analytical

modeling known as the Generalized Expansion method[19]. The queue decomposition

is virtually a modified service rate method to capture the blocking in the system.

One can show that adding the queues in this manner provides an upper bound on the

system throughput.

Queue decomposition will then result in an approximation for the real network

which has under certain circumstances a product form distribution. The key to the

process is the state dependent M/G/K/K node which captures the blocking in the

network.

With the queue decomposition approach, we have a relaxed approach to the closed

queueing network performance modeling. While for each finite queue, we have to add

two queues: One is of the M/G/K/K and another is the M/M/c queue, this still makes

for a polynomial bounded performance algorithm running within a branch-and-bound

environment. Adding the M/G/K/K node is tantamount to adding a holding node

for blocking as in the analytical modeling approach or even in the digital simulation

program Arena[17]. The queue decomposition approach is essentially a modified

service rate method to capture the blocking in the system. For a more detailed

explanation of the queue decomposition approach, the reader is referred to the recent

paper by Smith[27] which illustrated as follow:

For an M/G/c/c queue, the steady state probabilities are normally generated by

the following equations:

pn =
λ0λ1...λn−1
µ0µ1...µn

p0 (3.2)
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λi is Poisson arrival rate to node i, and µi is Exponential service rate at node i. pn

represent the probability of the situation whose number of customers is equal to n at

steady state. Based on 3.2, we have

1

p0
= 1 +

c∑
n=1

λ0λ1...λn−1
µ0µ1...µn

(3.3)

In the context of our investigation, the arrival rates are not influenced by n, and thus,

we define λ, such that λ = λ0 = λ1 = ... = λc which yields:

pn =
λn∏n
i=1 µi

p0, n = 1, ...c (3.4)

and

1

p0
= 1 +

c∑
n=1

{
λn∏n
i=1 µi

}
(3.5)

In developing the M/G/c/c model we assume that, µn, the service rate of each

of the n occupied servers, is dependent upon the number of parts or products on the

transport device by an exponential function. The explicit form of the exponential

function is based on the speed density curves relevant to the transport device.

The exponential state dependent delay curve we utilize to fit the material handing

speed or transport velocity is derived in the following way[26]. If we assume an

exponential decay relationship of the following form:

Vn = V1exp

[
−
(
n− 1

β

)γ]
(3.6)

where Vn is the velocity of the nth customer, V1 is free-flow speed of an occupant,

and β and γ are parameters. β and γ are determined algebraically by solving for the
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following equations where a and b are abscissas of the ordinates Va,Vb fitted to the

exponential curve, see[26]

γ =
ln
(
ln(Va/V1)
ln(Vb/a)

)
ln(a−1

b−1 )
(3.7)

β =
a− 1

[ln(V1/Va)]
1
γ

=
b− 1

[ln (V1/Vb)]
1
γ

(3.8)

With β, γ then the service rate which is used in the Mean Value Analysis algorithm

is:

µn = nexp[−(
n− 1

β
)γ] (3.9)

Then substituting µn into Equation 3.3 and 3.4 we obtain

Pn =
λn∏n

j=1
V1
L
exp[−( j−1

β
)γ]
P0, n = 1, ...c (3.10)

and where

1

P0

= 1 +
c∑

n=1

{
λn∏n

j=1 j
V1
L
exp[−( j−1

β
)γ]

}
(3.11)

3.4 Performance Modeling algorithm

One of the most practical and effective methods for the performance analysis of

our problem is the mean value analysis (MVA) method. The MVA is a recursive

technique for computing queue lengths, waiting times at each node, and throughput

in a closed queueing network. It is based on the arrival theorem, which states that

“upon arrival at a station, a job observes the system as if in steady state at an

arbitrary instant for the system with one job removed.” [28]The mean value analysis

is based on the mean waiting time and the mean queue size of the system. Reiser and

Lavenberg developed an efficient algorithm for the performance of closed networks.

The MVA starts with zero customers, and then increases the number of customers by

one at each iteration until reaching the defined number of total customers N in the
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system. Also, Little’s law which is the base of the MVA is necessary to be presented

before we discuss the algorithm. Little’s law is shown in equation 3.12:

L = λW (3.12)

Where L means the long-term average number of customers in a stable system. λ is

long-term average effective arrival rate. W is the average time a customer spends in

the system. Next, the MVA is shown below:

• 1.Little’s equation for each queue to compute the mean queue length for i =

1, 2, ..., A

nl(i) =
A∑
k=1

λlkωlk(i) (3.13)

where nl(i)is the expected length of queue l.

• 2.Using Little’s law computing the system throughput.

λlk(i) =
ik

[
∑N

i=1 ωlk(i)alk(i)]
(3.14)

• 3.Reiser and Lavenberg’s property of product-form network:

ωlk(i) = τlk[1 + nl(i− ek)] (3.15)

where ωlk is the expected delay of chain(k) products at queues(l).ek is a vector of

all zeroes except in the kth component which is set to 1 and τlk is the exponential

service time at queue l.[17]

3.5 Optimization Modeling Problem

Since developing a design rule, we need to consider and make a best decision for

the position of each queue location. To find the best arrangements, an optimization
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model is needed which is formulated by determining the objective function, con-

straints and decision variables. The procedure of formulating decision variables for

the optimization problem is very similar to what we did in section 1.3, the proper-

ty of Jackson closed network. In that model, there is a probabilistic choice when a

customer completing service at node i and joins node j. The probability is defined

as rij. So we can also define the problem which is maximizing the throughput of

queueing system and consider the exhaustive order or arrangement of nodes by the

transition matrix [A]. The element aij means the probability of the flow departure

from node i and arrival on node j is equal to aij . The transition matrix is a good tool

to plan the arrangement, the elements of matrix are easily changed and determined

by optimization method at each iteration to represent the different arrangements of

system.

For a tandem system, the constraints can be shown as:

m∑
j=1

aij = 1 i = 1, 2, ...m (3.16)

m∑
i=1

aij = 1 j = 1, 2, ...m (3.17)

Where n is the number of nodes. The above equation represents the sum of each

row and each column in the transition matrix is equal to 1. In a tandem system, there

is only one choice of arriving node for each departure node. Since what we concerned

with is the closed networks, there should be one and only one departure node and

arrival node for each station. So both the sum of each row and each column are 1.

But in the topology network, it is not quite true. The transition matrix of figure 1.1

shown below (also shown in chapter 1) is a good example.
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R =



0 0.3 0.4 0.3

1 0 0 0

1 0 0 0

1 0 0 0


Noticing that the constraint 3.16 is always true for all kinds of networks which

means the total probability of departure from node i is one. Obviously we can find

that the sum of each row is 1, which means the total departure probability is equal

to 1, but the sum of each column does not equal 1, because there are more than

one nodes having the same destination. So, using the transition matrix to formulate

the optimization problem directly is impossible because the constraints are different

between tandem and split/merge system. But actually it is possible to transform the

topologies to the tandem system. For example, as in figure 3.3 showing, the topology

split network can be considered as a tandem system ”2 1 3” , and the transition

matrix is shown below.

2

1

3

Position 1 Position 2

Position 3

2 1 3

Position 1 Position 2 Position 3

Figure 3.3. Simply Topological to Tandem
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R =


0 0 1

1 0 0

0 1 0


Since the purpose of using the transition matrix in the optimization problem is

to reflect the position of each node in the queueing network, what the optimization

algorithm exactly wants to know from the matrix is the information of the arrange-

ment and transfers it to performance algorithm, finally the performance algorithm

calculates the throughput of the network. So the topology networks can be repre-

sented the same as tandem systems during the initial stage of the optimization. In

other words, the transition matrix is the same for tandem arrangement ”2 1 3” and

split topology ”2 1 3”, and during the performance procedure, they are still treated

as different systems.

So with this transformation process, all types of topologies can be represented by

the transition matrix n and with decision variables aij. Generally, the optimization

problem can be represented as:

Maximize : Z =
∑m

l=1

∑A
k=1 θlk(Wk)

Subject to :

∑m
j=1 xij = 1 i = 1, 2, ...m∑m
i=1 xij = 1 j = 1, 2, ...m

xij = {0, 1} ∀ i, j

The objective function Z presents the total throughput of the closed queueing

network as a function of the finite population Wk. xij is the decision variable in

the transition matrix. The first constraint represents that one and only one activity
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is assigned to one site, while the second constraint indicates that each activity is

assigned for certain.

3.6 Optimization Algorithm

After formulating the optimization problem, a method to solve the problem should

be chosen. A most appropriate optimization method needed to deal with the problem

should work well for nonlinear programming problems and integer variables since the

throughput function is nonlinear and the elements of transition matrix are binary

variables. A Fortran subroutine which called the MISQP is employed, a modified

sequential quadratic programming (SQP) method. The SQP method is one of the

most popular algorithms to solve nonlinear optimization problems.[6]

For the SQP, generally, the optimization problem could be presented as blow:

Minimize : f(x)

Subject to

gi(x) ≥ 0

hi(x) = 0

x ∈ Rn,

So the Lagrangian of the problem is:

L(x, λ, σ) = f(x)− λtg(x)− σth(x)

To find the local minimize/maximize points, the first derivatives of objection func-

tion should equal to zero, so:

∇L(x, λ, σ) = 0,
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Equivalent to: 
∇xL(λ, σ) = ∇f ′(x)− g′(x)λ− h′(x)σ

∇λ = −g′(x)

∇σ = −h′(x)

g′ and h′ are the Jacobian matrix for gi(x) and hi(x). Usually Newton method is

employed to solve these equations as shown below:
xk+1

λk+1

σk+1

 =


xk

λk

σk

+


dxk

dλk

dσk


The step size is defined as:

∇2L(xk, λk, σk)


dxk

dλk

dσk

 = ∇L(xk, λk, σk)

Newton’s method is a method for finding approximate roots of a real-value func-

tion. For example, in order to get the root of f(x) = 0, the basic concept and iteration

is shown as:

f(x0) = (x0 − x)f ′(x0)

x0 is the start point, and f ′(x0) is the slope of the objective function at x0. x is the

new root point. So each iteration can be shown as :

xn+1 = xn − f(xn)
f ′(xn))

Actually it is based on Taylor series expansion objective function at f(x) = 0, which

is:

f(x) = 0 = f(x0) + f ′(x0)
1!

(x− x0) + f ′′

2!
(x− x0)2 + ...+ f (n)

n!
(x− x0)n

The MISQP is very similar to the SQP but adding the functions for solving integer

problems based on trust region analysis[5]. The convergence is usually very fast. The

flow chart of MISQP is shown in Figure 3.4
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Figure 3.4. Flow chart of MISQP mehtod

3.7 Enumeration Algorithm

Enumeration algorithms, or also called as Exhaustive algorithms, are employed

since to compare and verify the MISQP method, an exact comparison method is need-

ed which could generate all combinations of system arrangements. We can generate

and compare all of the probabilities in a relatively small system to help us evaluate

the rules of arrangement. Also, as said before, we can verify whether the MISQP

gives the optimal or sub-optimal solution of the problem.

The enumeration algorithm is built through the Lexicographical Order Method,

which is a generalization of all array permutations. It is widely used in computer

science. Usually it start at arrangement ′1234....n′, where n is the number of nodes,

25



www.manaraa.com

and the algorithm generate a new permutation based on previous one. Each iteration

is shown as below:

• Step 1. Let [P ] is permutation: [P ] = p1p2p3...pn

From the right side of the permutation, find the first number pj,which is smaller

than its right number. In other words, find: j = max(i | pi < pi+1)

• Step 2. Find the smallest number pk from the right side of pj which is bigger

than pj In other words, find: k = max(i | pi > pj)

• Step 3. Exchange pk and pj

• Step 4. Reverse the numbers which are after pj

The flow chart of the enumeration algorithm is shown as figure 3.5:

Figure 3.5. Flow chart of Flow chart of enumeration algorithm
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3.8 Explanation of algorithm and program

Since the performance algorithm is based on the queue decomposition method

which was explained in section 3.3 of the thesis, the program should transform the

original network (before decomposition) to the transformed network (after decompo-

sition). For instance, (shown in figures 3.6 and 3.7) station 1 is split into two nodes

which are node 1 and node 2. The new node 1 is always next to new node 2 and node

2 is always after the node 1. The transition matrix is shown in table 3.1, from the

figure we can see that 2 3 1 means the alternative of original 3 nodes network, and

the numbers below it, 3 4 5 6 1 2, imply the pattern of transformed network. The

elements a34 = a45 = a56 = a61 = a12 = a23 = 1 are the probabilities of departure and

arrival which also imply the arrangement of the system.

2 3 1

Figure 3.6. The Original Three Nodes Network

3 4 5 6

21

Figure 3.7. After Decomposition Transformation Network

[A]=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0


Table 3.1. Transition matrix for 2 1 3
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The output from the enumeration algorithm program for a 3 node tandem system

is shown in Table 3.2. To explain the result, the detail of pattern 123 should be

discussed, which is the first one illustrated in the table. 1 2 3 presents the arrangement

of system, 1 2 3 4 5 6 is the transformed network which has been decomposed. The

matrix below it is the transition matrix which is similar with the table 3.1, and

also discussed on chapter 3 of the thesis . So the program could provide all possible

combinations, the decomposition networks and transition matrices which are required

by the MVA analysis to calculate the throughput of systems.

Table 3.2. The output of enumeration method
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As discussed in section 3.4, the buffer speed is one of the coefficients of the through-

put function in the performance algorithm. To study the impact of different arrange-

ments, the buffer speed should be fixed at a reasonable value to not have bottlenecks

which can yield a better approximation in the MVA. The comparison of the through-

put in different queueing system by the Arena and the MVA is shown in table 3.3,

and we found the buffer speed should be considered individually for each queueing

system. For instance, in 3 and 4 tandem system, the best choice of buffer speed is

692.192 cm/s whose throughput is closest to the simulation value.Also the level of

blocking makes a big influence on buffer speed. The most suitable buffer speed is

lower than the tandem system since the split/merge system has more blocking than

the tandem.

Table 3.3. Data for different buffer speeds
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CHAPTER 4

DESIGN OF EXPERIMENTS

In this chapter, both tandem and split/merge topologies will be examined. The

MISQP method and enumeration algorithm are applied to the results. It is known

that the enumeration algorithm should present the best arrangement but it will cost

more time than the MISQP algorithm. Also, sensitivity analysis is implemented

to examine the results. Simulation analysis is set up for several networks to verify

the MVA. In order to discover design rules to predict the best arrangements, the

parameters of nodes are set in this way: each node has a service and buffer capacity

which is not to dissimilar in order not to create bottlenecks.

4.1 Experiment for tandem system

Tandem networks are the simplest and easiest systems in closed networks. They

are also the bases and references for topological networks. Three-nodes, four-nodes,

five-nodes, six-nodes and seven-nodes tandem networks are shown in each subsection.

Also the simulation results are shown for some systems by Arena. Some rules are

expected to be found which can help one to predict the best arrangements, like the

“bowl phenomenon”, which was discussed earlier.

4.1.1 Three-Node Tandem System

The three nodes tandem system and the network after decomposition is shown in

figures 4.1, 4.2. Coefficients of each node are shown in table 4.2. First, let µ1=1, µ2=2,

µ3=3 . After that to implement sensitivity analysis, putting µ1 = 2, µ2 = 3, µ3 = 4 to
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check the influence of service rate changing . The simulation is employed by Arena

to verify the MISQP arrangement. The result of two methods are shown in tables

4.2, 4.3. (The total population N=11)

1 2 3

Figure 4.1. The Original Three Node Network

1 2 3 4 5 6

Figure 4.2. Three-Node Tandem Network After Decomposed

Table 4.1. Three-Node Tandem Network

The %Dev in the tables means the percentage deviation of throughput between

the MISQP and the simulation. The results show the difference is really small. Two

methods (the enumeration and MISQP) give the same arrangement in both exper-

iments. From the first experiment we found the best station should be put in the

center of the system, however in the sensitivity analysis, the central node is the worst

one. This may be caused by the limitation of capacities since increasing the service

rate in sensitivity analysis would create more blocking in the network than in the
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Table 4.2. Three-Nodes Tandem Network, µ1=1, µ2=2, µ3=3

Table 4.3. Three-Nodes Tandem Network, µ1 = 2, µ2 = 3, µ3 = 4

original one. To prove the hypothesis, an experiment with infinite capacity for each

node was done by Arena and shown as in the last table 4.4.

Table 4.4. Arean for Three-Node Tandem Network With Infinite Capacities

So in the infinite capacities situation, the best arrangement is to set the best

node at the center. The rule for best arrangements may be the same as the “bowl

phenomenon” which is also putting the two worst stations at the first and last position,

however still more experiments are needed to prove it.

4.1.2 Four-node tandem system

The network is shown in figure 4.3. Same as three node network, the algorithm

decomposed the original networks to the M/G/k/k and the M/M/1. The coefficient

for each node is shown in table 4.5. Similar to the procedures were done before, first,
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let µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4 . After that, to test the influence of capacities

changing, k1 = 6, k2 = 7, k3 = 9, k4 = 10 is set in sensitivity analysis, the capacities

of each node are changed but the total number of capacities is same as the original

one. The result of the two experiments are shown in tables 4.6, 4.7.

1 2 3 4

Figure 4.3. The Original Four Node Network

Table 4.5. Four-Node Tandem Network

So one can see that the best arrangements for both experiments are satisfied by the

rules which made before. The worse nodes are set on both sides of the center position

and better nodes are closer to the center. Also, in sensitivity analysis, the difference

in throughput is really minor, so the influence of capacity is not significant when

the size is already large enough to avoid most of the blocking. In both experiments,

the maximum throughput is bigger than the number which is given by the MISQP.

But the deviation between the MISQP and the enumeration algorithm is around

0.000001%, so it is close and acceptable. Actually one can see that the influence of

different arrangements is very small in the tandem system.

The throughput of the system is close to 1, which is equal to the lowest service

rate of nodes in the system. In addition, from the experiments in section 4.1.1, this
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Table 4.6. Four-Node Tandem Network, µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4

Table 4.7. Four-Node Tandem Network, k1 = 6, k2 = 7, k3 = 9, k4 = 10

phenomenon is also be found, and the throughput is close to 2 in sensitivity analysis

since the lowest service rate is also 2 in that case.

4.1.3 Five-node tandem system

The network is shown in figure 4.4. First, let µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4, µ5 =

5. As before the phenomenon that the throughput is almost the same as the lowest

service rate in the system was found in both original and sensitivity experiments of

the 3 node and 4 node tandem systems. So to prove this hypothesis, µ1 = 1.2, µ2 =

2, µ3 = 3, µ4 = 4, µ5 = 5 is set in the sensitivity analysis, to measure the relationship

between service rate and throughput. The result is shown in tables 4.9, 4.10.

1 2 3 4 5

Figure 4.4. The Original Five Node Network
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Table 4.8. Five-Node Tandem Network

Table 4.9. Five-Node Tandem Network, µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4, µ5 = 5

Table 4.10. Five-Nodes Tandem Network, µ1 = 1.2, µ2 = 2, µ3 = 3, µ4 = 4, µ5 = 5

From the tables,the results also followed the design rules. The improvement of

throughput is significant in the sensitivity experiment. So the slowest station is the

bottleneck of the system and makes a big influence on throughput. This time the

MISQP gives a different arrangement between the enumeration algorithm. But the

difference between best and sub-optimal arrangement is really small, and the MISQP

cannot yield the best arrangement since it may has already converged to a sub-optimal

point.
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4.1.4 Six-node tandem system

The data and results are shown in table 4.14. Again, the results show that the

order in the tandem system is not able to make a huge influence on throughput of

the system, and a lot of different arrangements have the same throughput. From the

experiments before we find the throughput of system is usually determined by the

worst node, and expect this rule is also established in six node system.

1 2 3

456

Figure 4.5. The Original Six-Node Network

Table 4.11. Six-Node Tandem Network

Table 4.12. Throughput of Six-Node Tandem Network

The results did not satisfy the rule (“bowl phenomenon”) since the capacity is

not large enough to avoid most of the blocking in the system, like what was discussed
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earlier in the three node tandem system. However, the throughput is close to the

lowest service rate in the system, and the difference between the best and the ar-

rangement which follows the “bowl phenomenon” is really small. So it still could give

an acceptable result.

4.1.5 Seven-node tandem system

1 2 3 4

567

Figure 4.6. The Original Seven-node Network

Table 4.13. Seven-Node Tandem Network

Table 4.14. Throughput of Seven-Node Tandem Network

The seven node experiments proved what was discussed above. Since the difference

is small, the arrangement which follows the design rule is acceptable even though it
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is not the best. So considering this rule is enough for tandem system, and more

attention should be paid to the split/merge topology system in which the different

arrangements may have bigger improvement, rather than tandem system.

4.2 Experiment for Split/Merge Topology networks

Different from the tandem systems, the split/merge topology systems are thought

of having much more variability between the different arrangements. Also, the ex-

pected applications of split/merge topology closed queueing networks can be more

varied than tandem. In the topology experiments, some rules are expected to help

one get the best arrangements, also it is useful to find a better starting point in the

MISQP.

4.2.1 Four nodes split and merge topology system

Similar to the tandem system, decomposing the original networks is necessary. The

original system is shown in figure 4.7. Let µ1 = 1, µ2 = 2, µ3 = 3, µ4 = 4 . Especially,

in sensitivity analysis, the capacity of each node is changed to k1 = k2 = k3 = k4 = 4

in order to check the influence of capacity size. The results are shown in tables 4.16,

4.17. (N=5)

1

2

3

4

50%

50%

Figure 4.7. Four node split and merge topology system; Transformation
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Table 4.15. Four node split and merge topology system

Table 4.16. Four node split and merge topology system, µ1 = 1, µ2 = 2, µ3 = 3, µ4 =
4

Table 4.17. Four node split and merge topology system, k1 = k2 = k3 = k4 = 4

From the results, the following hypothesis can be made: in a split/merge topology

system, to maximize throughput, the best nodes should be placed at the merge posi-

tions. So in these experiments, the two best nodes need to be set on position 1 and
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4. More experiments and evidence should be provided to prove it. This hypothesis

also could help one to choose the starting point of the MISQP method.

In sensitivity analysis, even though the capacities were larger, the throughput

was decreased instead of improving it. In fact, the total of population and the total

of the capacities should be changed at the same time, The throughput is a concave

function of population when the capacities are fixed. So to maximize the throughput,

the number of tasks in system need to match the total capacity. Actually the proper

number came from the following formula:

N =

(∑n
i=1 ki + n

2

)
− 1 (4.1)

N is the proper population, n is the number of nodes. ki is the capacity of node

i. For k1 = k2 = k3 = k4 = 4, N = 9.

4.2.2 Five node split topology system(balance)

1

2

4

50%

50%

3

5

Figure 4.8. Five node split topology system

From the system figure 4.8, obviously, position 1 in the system is the most impor-

tant since it is the split node. To maximize the throughput, the best node which has

the largest capacity and the highest service rate should be placed on it. Because the

two split chains are parallel, discussing the arrangement on each chain is meaningless

and more experiments are needed to determine the arrangement rules.
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Table 4.18. Five node split topology system

4.2.3 Five node split topology system(imbalance)

1

2

4

20%

80%

3

5

Figure 4.9. Five node split topology system(imbalance)

From the results in table 4.19, since this system is an imbalanced system, the

difference between each arrangement became greater, even though the split node (po-

sition 1) is the same. Different arrangements on the chains could make a big influence.

The network on a split chain can be substantially equivalent to a tandem system, so

the worst node is the bottleneck in the network. From these two experiments (balance

and imbalance), two design rules are developed to maximize the throughput for these

systems:
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Table 4.19. Five node split topology system(imbalance)

• I: Place the best node on the split position (in this case, it is position 1)

• II: Place the worse nodes on the same chain whose arrival probability is lowest.

To test our rules, more experiments are demanded. Also these rules could help

one to choose the starting point of the MISQP method.

4.2.4 Seven node split topology system(balance)

The network is shown in figure 4.10

From the design rules made above, to maximize the throughput, node 7, which

is the best node in system, should be chosen for position 1. Because the two split

chains are parallel, the second design rule is unnecessary in this case.
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1

2

5

50%

50%

3

6

4

7

Figure 4.10. Seven node split topology system(balance)

Table 4.20. Seven node split topology system(balance)

The result is satisfied with the first rule, which requires putting the best node at

position 1. However, since the system is a balanced one, to prove the second rule,

some imbalance experiments are indispensable.

4.2.5 Seven node split topology system(imbalance)

The coefficients for each node are not changed. From the first design rule, node

7 is required to be placed at position 1. By the second rule, determining node 1,2

and 3 should be sited on the chain whose arrival rate is 20%. So the prediction of the
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1

2

5

20%

80%

3

6

4

7

Figure 4.11. Seven node split topology system(imbalance)

Table 4.21. Seven node split topology system(imbalance)

best arrangement is: 7 1 2 3 4 5 6. To compare with the experiment result, it totally

matches the prediction.

4.2.6 Six node split system(20%× 5)

By the first rule, obviously the best station should be set on position 1. Next,

actually no matter how we arrange the nodes expect position 1, the throughput is

same. Since all split chains have the same arrival probability. To consider and prove

the second design rule, an imbalance system is made.

44



www.manaraa.com

1

2

5

3

6

4

20%

20%

20%

20%

20%

Figure 4.12. Six node split system(20%× 5)

Table 4.22. Six node split system(20%× 5)

4.2.7 Six node split system(imbalance)

The system is shown in figure 4.13
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1

2

5

3

6

4

50%

20%

10%

10%

10%

Figure 4.13. Six nodes split system(imbalance)

Table 4.23. Six nodes split system(imbalance)

The same as before, from the first rule, the node on position 1 is a split station

and the best node should be allocated to it. From the second design rule, better nodes

are sited at the position whose arrival rate is higher than others, which means one
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needs to set node 5 at position 2, and node 4 at position 3. The throughput does not

change no matter how we arrange the others since the probability is same at position

4, 5 and 6. The result shown in table 4.23 proves the prediction.

4.2.8 Five Node Split merge(balance)

1

2

50% 4

5

3

50%

Figure 4.14. Five node merge and split system

Table 4.24. Five node merge and split system

The network is shown in figure 4.14. Notice that the split stage is position 3.

By the first design rule, the most important procedure to maximize the throughput
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is setting the best node at position 3. Since other nodes are not as important as

it, considering how to assign them is not necessary. Also, the final result from the

experiments proves our hypothesis.

4.2.9 Five Node Split merge(imbalance)

1

2

20% 4

5

3

80%

Figure 4.15. Five node merge and split system(imbalance)

Table 4.25. Five node merge and split system(imbalance)

Similar to the previous network, according to the first rule, node 5 should be

placed at position 3. Additionally, since the imbalance situation, by the second

rule, determining node 1,2 should be sited on the chain whose arrival rate is 0.2,
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so the prediction of best arrangement is: 1 3 5 2 4. The result totally matches the

prediction.

4.2.10 Three node split topology system

1

2

3

50%

50%

Figure 4.16. Three node split system(imbalance)

All experiments we did before are based on this situation: every node is exactly

better(or worse) than others. However, when nodes are not easily distinguished,

it is really difficult to say which arrangement would be the best before doing the

experiments. For instance, the system shown in figure 4.16, first, let µ1 = 1.667, µ2 =

1.25, µ3 = 1. After that to implement sensitivity analysis, let µ1 = µ2 = µ3 = 1. The

result of two methods is shown in tables 4.27 and 4.28. (N=10)

Table 4.26. Three node split system(imbalance)

When the nodes are not distinguishable, it is really complicated to present the

best arrangement by the design rules. Either considering service rate or capacity

is not enough. Generally speaking, higher service rate means better performance,
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Table 4.27. Three node split and merge topology system, µ1 = 1.667 µ2 = 1.25 µ3 =
1

Table 4.28. Three node split and merge topology system, µ1 = µ2 = µ3 = 1

however, when the capacity is not large enough, there would be more blocking to

offset the service rate advantage. On the other hand, bigger capacity would not

improve the throughput when the service rate is too low. It may be true that less

blocking would happen, but it is not to say that less blocking would definitely improve

the performance of network. So there is a trade-off relationship between capacity and
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service rate when nodes compare with each node, and instead of simply judge the

node by these two coefficients, A method may be needed to determine which node is

better. After evaluating the nodes, the design rule can work more reliably.

4.3 Experiments for M/G/c/c system

In many applications of closed queueing network, especially in the manufacturing

engineering field, usually a transport system or conveyor is included in the system,

which can be treated as M/G/c/c nodes in the queueing network. The M/G/c/c

nodes are fixed in the system, so one should consider the arrangement without it. It

acts more like a big buffer in the system, and one may expect the property of the

M/G/c/c networks is similar to the previous model. Also the rules made for tandem

and topologies are examined in the experiments.

4.3.1 Six node M/G/c/c tandem system

The system is shown in figure 4.17.

1

M/G/c/c

4 2

M/G/c/c

5

M/G/c/c

63

Figure 4.17. Six node M/G/c/c tandem system

From this tandem network experiment, the six node M/G/c/c system is very

similar to the four node tandem experiment we did before. The best arrangement

is satisfied by the “bowl phenomenon”. The difference between each arrangement is

very small. However, to test our rules made in the split/merge topology system, more

network experiments are needed.
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Table 4.29. Six node M/G/c/c tandem system

4.3.2 Five node split M/G/c/c system

1

2

3

50%

50%

M/G/c/c

M/G/c/c

4

5

Figure 4.18. Five Node split M/G/c/c system

As we said before, since the M/G/c/c stations could be considered as a big buffer,

so the design rules are still can be empolyed to predict the best arrangement for

topology networks. In this case, it can be treated as a three node split system, the

best node should be set on position 1 by first rule. The result matches our prediction.

To test the second rule, an imbalance system is needed.
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Table 4.30. Five Node split M/G/c/c system

4.3.3 Five node split M/G/c/c system(imbalance)

1

2

3

20%

80%

M/G/c/c

M/G/c/c

4

5

Figure 4.19. Five Node split M/G/c/c system(imbalance)

The system is shown in figure 4.19. This network is similar to the previous system,

however, this time since it is imbalanced, both rules are necessary. So after setting

node 3 on position 1, node 1 should be placed at position 2 because the arrival

probability is lower than the other chain.
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Table 4.31. Five Node split M/G/c/c system(imbalance)

1

2

4

50%

50%

M/G/c/c

M/G/c/c

6

7

3

5

Figure 4.20. Seven Node split M/G/c/c system

4.3.4 Seven Node split M/G/c/c system

Since the M/G/c/c nodes can be considered as a buffer, this system is very similar

to the five nodes split system which done before. To maximize the throughput, again,

follows the design rule. Because the two split chains are parallel so one does not need

to consider the arrangement of nodes on the chain. Also, it seems the rules suggested

before also work well in the M/G/c/c networks.
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Table 4.32. Seven Node split M/G/c/c system

1

2

4

20%

80%

M/G/c/c

M/G/c/c

6

7

3

5

Figure 4.21. Seven Node split M/G/c/c system(imbalance)

4.3.5 Seven Node split M/G/c/c system(imbalance)

Also the system can be considered as a five node split, the best node should

be set at position 1. This time the split probabilities are different so the second

rule is needed to help one determine the best arrangement. Based on the previous

experiences before, one could easily put the better node at position 4 and 5.
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Table 4.33. Seven Node split M/G/c/c system(imbalance)

4.3.6 Six Node split and merge M/G/c/c system

The network is shown in figure 4.22. This system can be treated as the 4 node

split and merge system. So split position 1 and position 4 need to have the better

nodes according to the first rule.

1

2

3

50%

50%

M/G/c/c

M/G/c/c

5

6

4

Figure 4.22. Six Node split and merge M/G/c/c system
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Table 4.34. Six Node split and merge M/G/c/c system

4.3.7 Six Node split and merge M/G/c/c system(imbalance)

1

2

3

20%

80%

M/G/c/c

M/G/c/c

5

6

4

Figure 4.23. Six Node split and merge M/G/c/c system(imbalance)

The network is shown in figure 4.23. Based on the previous experiment result,

since the imbalance situation one needs to put the worst node at position 2, which

has a lower probability than the other.
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Table 4.35. Six Node split and merge M/G/c/c system(imbalance)

4.4 Simulation by Arena

To verify our performance method for closed queueing networks, some simulations

by Arena are done to compare with the MVA and it also is expected to present an

upper bound on the throughput.

4.4.1 Six Node Tandem System

The system is shown in figure 4.24

1 2 3

456

Figure 4.24. Six Node Tandem System for Arena
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Table 4.36. Six Node Tandem System from Arena

4.4.2 Seven Node Tandem System

1 2 3 4

567

Figure 4.25. Seven Node Tandem System for Arena

From the results of the six nodes and the seven nodes tandem system, the differ-

ence of throughput between the MVA and Arena is around 0.5%. So it is acceptable

and the MVA gives an upper bound.
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Table 4.37. Seven Node Tandem System from Arena

4.4.3 Five node split topology network(imbalance)

1

2

4

20%

80%

3

5

Figure 4.26. Five node split topology network(imbalance) for Arena

In the worst arrangement case, the difference is around 5%. But it is more signif-

icant in the best arrangement, which is around 7%
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Table 4.38. Five node split topology network(imbalance) from Arena

4.4.4 Seven node split topology network(imbalance)

The network is shown in figure 4.27

1

2

5

20%

80%

3

6

4

7

Figure 4.27. Seven node split topology network(imbalance) for Arena

Similar to five node spilt case, the difference in the worst arrangement case is less

than 1%, but it is around 7.5% for best arrangement. It may mainly because there is

more blocking in the simulation during high speed situation than MVA. The capacity

of some nodes may be a little lower than expected.
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Table 4.39. Seven node split topology network(imbalance) from Arena

4.4.5 Six node split topology network(50%+20%+10%+10%+10%)

1

2

5

3

6

4

50%

20%

10%

10%

10%

Figure 4.28. Six node split topology network(imbalance) for Arena
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Table 4.40. Six node split topology network(imbalance) from Arena

The network is shown in figure 4.28.

This time the difference for the two cases are similar, around 4%. There are two

reasons to explain it: first, the capacity of each of the nodes are larger, which would

have less blocking, and second, the network in each split chain is much simpler than

the previous, which is also results in less blocking.

4.5 Summary and Conclusions

Two optimization methods are employed to help one get the best topological ar-

rangements for closed finite queueing networks: The first one is an exact enumeration

algorithm to generate all possible patterns. It works well and the optimal solution

can be found, however for larger networks, the time will grow exponentially. (For an

m-node system, the number of solutions is m!). The second program is the MISQP. It

requires fewer iterations so it is both efficient and effective. But the answer from the

MISQP will not always guarantee the best optimal solution. It provides an acceptable
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sub-optimal solution in shorter computing time. The number of iterations for each

method is shown in table 4.41. It can be seen that the advantage of the MISQP is

more significant when the system is larger. On the other hand, for small queueing

networks, the enumeration method is good enough and the MISQP is not necessary.

Table 4.41. Number of iterations for each system

From the experimental results, it can be concluded that the best arrangement

usually follows the “bowl phenomenon”, even though it does not give the best ar-

rangement all the time, the difference between a sub-optimal arrangement and best

is very small. Also, tandem systems are less sensitive or more robust than the s-

plit/merge topologies systems. The MISQP works better on split/merge topologies

than the tandem since the objective function has a more significant change between

each alternative considered.

Based on the experimental results, we developed two rules to help one find the

best arrangement in split/merge topology system.

• I: Place the best nodes at the merge position.

• II: Place the worse nodes along the chain whose arrival probability is lower.

Also many experiments were carried out to prove them and we found that they work

well in many of split/merge topologies systems.

Networks which include the M/G/c/c nodes were also studied. They are treated

as a big buffer and we found the design rules for different topologies work well for the

M/G/c/c system.
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To verify the MVA for closed networks, Arena has been used to simulate the

throughput and cycle time of our networks. The difference is often acceptable and

our analysis has verified it.

For future research, we can concentrate on systems whose nodes are hard to be

compared by each others. For example, given in the three node split experiment,

there is a trade-off relationship between capacity and service rate, and instead of

simply judging the node by these two coefficients, a method is needed to determine

which node is better. After evaluating the nodes, we can use the design rules reliably.

Finally, more complicated experiments can be considered where service times other

than exponential occur for a queue’s service time distribution, and multiple servers

exist at the nodes.
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APPENDIX

COMPUTER PROGRAM FOR ENUMERATION
ALGORITHM

INTEGER a

Print *,’Please type the number of nodes’

READ *, a

call pattern(a)

END

***************

SUBROUTINE pattern(a)

integer a

INTEGER matrix(2*a,4)

INTEGER input(1,2*a)

integer n m j k num1 t

integer pattern(1,a)

integer patternnew(1,a)

*****************

c Let the initial matrix is [0]

*****************

DO i=1,2*a

DO j=1,4

matrix(i,j)=0

End DO
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End DO

!Let the initial pattern is [1,2,3...a]

Do n=1,a

pattern(1,n)=n

END DO

f=1

!Write the first pattern on the file.

OPEN(13,FILE=’matrix.txt’)

WRITE(13,100),((pattern(i,j),j=1,a),i=1,1)

!get the first transform pattern

DO n=1,a

input(1,2*n-1)=2*pattern(1,n)-1

input(1,2*n)=2*pattern(1,n)

END DO

c WRITE(13,100) ,((input(i,j),j=1,2*a),i=1,1)

**************************

!get the first transform matrix

**************************

DO n=1,2*a

matrix(n,2)=1

matrix(n,4)=1

matrix(n,1)=input(1,n)

if (n==2*a) then

matrix(n,3)=input(1,1)

ELSE

matrix(n,3)=input(1,n+1)

END IF
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end do

c WRITE(13,100) ,((matrix(i,j),j=1,4),i=1,2*a)

matrix=0

c print *,pattern

Do n=1,a

m=n

f=f*m

end do

c General the pattern

Do n=1,f-1

DO m=1,a-1

if (pattern(1,a-m)¡pattern(1,a+1-m)) then

j=a-m

exit

end if

END DO

if (j+1==a) then

k=j+1

ELSE

DO m=j+1,a-1

if(pattern(1,m)¿pattern(1,j)) then

num1=pattern(1,m)

k=m

end if
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if(pattern(1,m+1)¡num1.and.pattern(1,m+1)¿pattern(1,j)) then

k=m+1

end if

End Do

END IF

patternnew=pattern

patternnew(1,j)=pattern(1,k)

patternnew(1,k)=pattern(1,j)

if(j==a-1) then

continue

else

DO m=j+1,a-1

t=m-j

if (m¿a+1-t) then

exit

end if

num1=patternnew(1,m)

patternnew(1,m)=patternnew(1,a+1-t)

patternnew(1,a+1-t)=num1

end do

end if

write(13,100),((patternnew(i,j),j=1,a),i=1,1)

DO m=1,a

input(1,2*m-1)=2*patternnew(1,m)-1

input(1,2*m)=2*patternnew(1,m)

END DO
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c WRITE(13,100) ,((input(i,j),j=1,2*a),i=1,1)

DO m=1,2*a

matrix(m,2)=1

matrix(m,4)=1

matrix(m,1)=input(1,m)

if (m==2*a) then

matrix(m,3)=input(1,1)

ELSE

matrix(m,3)=input(1,m+1)

END IF

end do

c WRITE(13,100) ,((matrix(i,j),j=1,4),i=1,2*a)

pattern=patternnew

matrix=0

end do

100 Format(7I3)

end
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